12,439 research outputs found

    Resonant three-body physics in two spatial dimensions

    Full text link
    We discuss the three-body properties of identical bosons exhibiting large scattering length in two spatial dimensions. Within an effective field theory for resonant interactions, we calculate the leading non-universal corrections from the two-body effective range to bound-state and scattering observables. In particular, we compute the three-body binding energies, the boson-dimer scattering properties, and the three-body recombination rate for finite energies. We find significant effective range effects in the vicinity of the unitary limit. The implications of this result for future experiments are briefly discussed.Comment: 15 pages, 8 figures, published versio

    Multimode circular integrated optical microresonators: Coupled mode theory modeling

    Get PDF
    A frequency domain model of multimode circular microresonators for filter applications in integrated optics is investigated. Analytical basis modes of 2D bent waveguides or curved interfaces are combined with modes of straight channels in a spatial coupled mode theory framework. Free of fitting parameters, the model allows to predict quite efficiently the spectral response of the microresonators. It turns out to be sufficient to take only a few dominant cavity modes into account. Comparisons of these simulations with computationally more expensive rigorous numerical calculations show a satisfactory agreement

    Three-body problem in heteronuclear mixtures with resonant interspecies interaction

    Full text link
    We use the zero-range approximation to study a system of two identical bosons interacting resonantly with a third particle. The method is derived from effective field theory. It reduces the three-body problem to an integral equation which we then solve numerically. We also develop an alternative approach which gives analytic solutions of the integral equation in coordinate representation in the limit of vanishing total energy. The atom-dimer scattering length, the rates of atom-dimer relaxation and three-body recombination to shallow and to deep molecular states are calculated either analytically or numerically with a well controlled accuracy for various energies as functions of the mass ratio, scattering length, and three-body parameter. We discuss in detail the relative positions of the recombination loss peaks, which in the universal limit depend only on the mass ratio. Our results have implications for ongoing and future experiments on Bose-Bose and Bose-Fermi atomic mixtures.Comment: 13 pages, 8 figures, minor changes, published versio

    The Coronal Analysis of SHocks and Waves (CASHeW) Framework

    Full text link
    Coronal Bright Fronts (CBF) are large-scale wavelike disturbances in the solar corona, related to solar eruptions. They are observed in extreme ultraviolet (EUV) light as transient bright fronts of finite width, propagating away from the eruption source. Recent studies of individual solar eruptive events have used EUV observations of CBFs and metric radio type II burst observations to show the intimate connection between low coronal waves and coronal mass ejection (CME)-driven shocks. EUV imaging with the Atmospheric Imaging Assembly(AIA) instrument on the Solar Dynamics Observatory (SDO) has proven particularly useful for detecting CBFs, which, combined with radio and in situ observations, holds great promise for early CME-driven shock characterization capability. This characterization can further be automated, and related to models of particle acceleration to produce estimates of particle fluxes in the corona and in the near Earth environment early in events. We present a framework for the Coronal Analysis of SHocks and Waves (CASHeW). It combines analysis of NASA Heliophysics System Observatory data products and relevant data-driven models, into an automated system for the characterization of off-limb coronal waves and shocks and the evaluation of their capability to accelerate solar energetic particles (SEPs). The system utilizes EUV observations and models written in the Interactive Data Language (IDL). In addition, it leverages analysis tools from the SolarSoft package of libraries, as well as third party libraries. We have tested the CASHeW framework on a representative list of coronal bright front events. Here we present its features, as well as initial results. With this framework, we hope to contribute to the overall understanding of coronal shock waves, their importance for energetic particle acceleration, as well as to the better ability to forecast SEP events fluxes.Comment: Accepted for publication in the Journal of Space Weather and Space Climate (SWSC

    Towards a robust estimate of the merger rate evolution using near-IR photometry

    Get PDF
    We use a combination of deep, high angular resolution imaging data from the CDFS (HST/ACS GOODS survey) and ground based near-IR KsK_s images to derive the evolution of the galaxy major merger rate in the redshift range 0.2z1.20.2 \leq z \leq 1.2. We select galaxies on the sole basis of their J-band rest-frame, absolute magnitude, which is a good tracer of the stellar mass. We find steep evolution with redshift, with the merger rate (1+z)3.43±0.49\propto (1+z)^{3.43\pm0.49} for optically selected pairs, and (1+z)2.18±0.18\propto (1+z)^{2.18\pm0.18} for pairs selected in the near-IR. Our result is unlikely to be affected by luminosity evolution which is relatively modest when using rest-frame J band selection. The apparently more rapid evolution that we find in the visible is likely caused by biases relating to incompleteness and spatial resolution affecting the ground based near IR photometry, underestimating pair counts at higher redshifts in the near-IR. The major merger rate was \sim5.6 times higher at z1.2z\sim1.2 than at the current epoch. Overall 41%×\times(0.5\gyr/τ\tau) of all galaxies with MJ19.5M_J\leq-19.5 have undergone a major merger in the last \sim8 \gyr, where τ\tau is the merger timescale. Interestingly, we find no effect on the derived major merger rate due to the presence of the large scale structure at z=0.735z=0.735 in the CDFS.Comment: Accepted for Publication in ApJ. 9 Figure

    Health education in Montana secondary schools

    Get PDF

    Molecular Weight Dependence of Polymersome Membrane Elasticity and Stability

    Full text link
    Vesicles prepared in water from a series of diblock copolymers and termed "polymersomes" are physically characterized. With increasing molecular weight Mˉn\bar{M}_n, the hydrophobic core thickness dd for the self-assembled bilayers of polyethyleneoxide - polybutadiene (PEO-PBD) increases up to 20 nmnm - considerably greater than any previously studied lipid system. The mechanical responses of these membranes, specifically, the area elastic modulus KaK_a and maximal areal strain αc\alpha_c are measured by micromanipulation. As expected for interface-dominated elasticity, KaK_a (\simeq 100 pN/nmpN/nm) is found to be independent of Mˉn\bar{M}_n. Related mean-field ideas also predict a limiting value for αc\alpha_c which is universal and about 10-fold above that typical of lipids. Experiments indeed show αc\alpha_c generally increases with Mˉn\bar{M}_n, coming close to the theoretical limit before stress relaxation is opposed by what might be chain entanglements at the highest Mˉn\bar{M}_n. The results highlight the interfacial limits of self-assemblies at the nano-scale.Comment: 16 pages, 5 figures, and 1 tabl

    Ascent control studies of the 049 and ATP parallel burn solid rocket motor shuttle configurations

    Get PDF
    The control authority approach is discussed as a major problem of the parallel burn soil shuttle configuration due to the many resulting system impacts regardless of the approach. The major trade studies and their results, which led to the recommendation of an SRB TVC control authority approach are presented

    Acculturation as the key to the ultimate attainment? The case of Polish-English bilinguals in the UK

    Get PDF
    This chapter focuses on the variables predicting L2 attainment in 149 migrants (L1 Polish and L2 English) who relocated to the UK in early adulthood. They are highly educated sequential bilinguals who have been resident in the UK for an average of eight years following migration. Independent variables analysed in this chapter are divided into three categories: 1) post-migration sociolinguistic aspects, namely, acculturation level and frequency of L2 use following migration; 2) possible temporal predictors of the L2 attainment, namely, age of onset, age at migration and length of domicile in the host country; and 3) socio-biographical variables, namely, context of L2 acquisition, education level, age, gender and motivation behind migration. The results showed that acculturation level is strongly linked to L2 attainment
    corecore